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Using a public data set of Major League Baseball salaries and on-field statistics, this paper runs 
regressions for all possible combinations of the selected control variables to generate statistically 
significant but spurious results, a practice known as "p-hacking." This overt, deliberate, and 
systematic p-hacking leads to many counterintuitive results that can help students think 
carefully about variable selection, causality, and parsimony. In addition, this paper provides an 
R script that students can easily modify to fit data sets of their choosing. 
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1. Introduction

Every semester hundreds of professors teaching Introductory Econometrics inveigh 
against the manipulation of variables and functional form to achieve statistical significance.  
Similarly, textbooks and peer-reviewed articles warn against a practice that is both pernicious 
and ubiquitous. For example, Imbens (2021), 

To put it bluntly, researchers are incentivized to find p-values below 0.05. This 
has led to concerns about researchers searching for specifications (whether 
consciously or unconsciously) that lead to such p-values in ways that invalidate 
the meaning and interpretation of those p-values. This has become known as 
p-hacking.1 

While there has been some progress (Brodeur, et al., 2020), multiple academic fields suffered 
replication crises in recent years, suggesting that "unsatisfactory" results lurk behind far too 
many published findings (Loken & Gelman, 2017). The final results may appear sound, but only 
the authors know how many alternative specifications they considered and rejected before 
submitting their findings to peer review. Perhaps a different approach could help, motivated by 
Angrist and Pischke’s (2017) observation that " Econometrics is better taught by example than 
abstraction."

Instead of railing against p-hacking, we might embrace it in order to expose the 
results of overt, deliberate, and systematic p-hacking. By highlighting regression’s potential 
shortcomings early in a student’s academic career, we can instill a healthy and life-long 
skepticism of significant results.  This paper does not attempt to provide a conclusive analysis 
of baseball salaries; instead, it highlights the many ways such an attempt could fail.  We do so 
by constructing a data set of 400 Major League Baseball (MLB) players’ 2016 salaries and 16 
measures of their on-field performance over the 2015 season, and then regressing salary on all 
combinations of those 16 variables.  We record and summarize the coefficients and t-statistics, 
showing the prevalence of statistically significant yet spurious results.  

The remainder of this paper proceeds as follows: The Data section introduces a public 
data set of professional baseball salaries and performance statistics, noting both its strengths 
and shortcomings. The Results section summarizes the findings from regressing salary on every 
available combination of control variables, highlighting the results that defy basic intuition. 
Having demonstrated the prevalence of the problem, the How to Select Independent Variables 
section suggests ways credible econometricians should think about selecting control variables. 
Finally, this paper provides the R Replication Script used to generate the results so that students 
can recreate this exercise on datasets of their choice. 

2. Data 

The R package Lahman (Friendly, et al., 2022) provided the raw data for this paper. The 
code used to obtain the data set used in the regressions appears in Part 1 of the R Replication 
Script section below. This captures the 2016 salary and 2015 on-field performance of 400 MLB 
players.2  The independent variables are: At Bats (AB), Runs (R), Hits (H), Doubles (X2B), Triples 
(X3B), Home Runs (HR), Runs Batted In (RBI), Stolen Bases (SB), Base on Balls (BB, i.e. "walks"), 
Strikeouts (SO), Intentional Walks (IBB), Grounded into Double Plays (GIDP), Games Started (GS), 

1For more examples, see McCloskey and Ziliak (1996) or Head, et al. (2015).
2The data used in this paper excludes pitchers, as their salaries depend on different performance measures than 
field position players.
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Putouts (PO)3, Assists (A), and Errors (E). For those unfamiliar with the game, we expect the 
coefficient in regressions to all be positive except for SO, GIDP, and E.

The most salient feature of the dependent variable is its right-skew. Salaries ranged from $507,500 
to $28,000,000 with a median of $2,125,000 and a mean of $5,073,769. For a visualization, see 
the histogram in Figure 1, below. 

Figure 1: Distribution of 400 MLB Salaries in 2016

Almost every empirical analysis of observational data suffers from some omitted variable 
bias. This data set is no exception. There are three notable missing variables: experience, 
position, and contract status. A promising young player in 2015 may have earned a 2016 
contract that assumed his continued improvement, whereas an older player "past his prime" 
might sign a contract reflecting an anticipated downward trajectory.4 Some positions earn 
more than others, so different intercepts for positions would improve model fit (Magel and 

3 "[A]n out is recorded when a player at bat or a baserunner is retired by the team in the field… For every out that 
is recorded by the defensive team, a putout is given to a fielder…" See, https://www.mlb.com/glossary/standard-
stats/out. 
4The effect of experience on contracts is further complicated by the player’s "service time." For details, see  https://
www.mlb.com/glossary/transactions/service-time. 

https://www.mlb.com/glossary/standard-stats/out
https://www.mlb.com/glossary/standard-stats/out
https://www.mlb.com/glossary/transactions/service-time
https://www.mlb.com/glossary/transactions/service-time


176

Herndon / Journal of Economics Teaching (2023)

Hoffman, 2015).5 The direction of omitted variable bias from contract status is hard to interpret, 
but the relative weights of guarantees and incentives will impact the model’s fit for better or 
worse.6 In light of these missing variables and the wide dispersion of salaries, we should not be 
too surprised if our regressions fail to explain much of the variance. Students with a particular 
interest in baseball may use the Lahman package to explore a wider space of independent 
variables than those used in this paper.

Despite those shortcomings, this dataset is more suitable for a simple regression than 
most real-world data for three reasons. First, we have little to no concern that measurement 
error will bias our coefficients downward. Economists have trouble measuring common 
variables such as income and GDP (Feldstein, 2017), whereas a player’s number of strikeouts 
in a season suffers no such ambiguity. Second, using the set of all MLB players eliminates 
selection bias, a problem that confounds attempts to measure the marginal effect of things like 
education (Winship and Mare, 1992) or union membership (Heckman, 1990). Third, we know 
the true effect of every variable, making it obvious when we have the "wrong" sign for baseball 
statistics; for many economic questions that will not be so clear. For example, an increase in 
wages has an ambiguous effect on an individual worker’s labor supply: the income effect tends 
to increase the demand for leisure, while the substitution effect increases the opportunity 
cost of leisure and incentivizes more hours worked. For this topic and many others, a poorly 
reasoned regression can yield incorrect results without the benefit of knowing the "right" sign 
for a coefficient.

3. Results

First, we consider the univariate regressions shown in Table 1, below. The most 
conspicuous result is the finding that RBIs alone can account for over 27 percent of the observed 
variation in salaries. This overstates the importance of RBIs, as they are correlated with games 
played (and several other variables).7 But the issue of omitted variable bias becomes even more 
obvious when we consider strikeouts. Taken at face value, a univariate regression implies a 
marginal raise of over $51,000 per strikeout. Moreover, this effect is highly significant, with a 
t-statistic over 7.8 

5However, as shown in Part 1 of the R script below, many players recorded statistics at multiple positions, making 
the designation of, say, "shortstop" more complicated than it might appear.  
6See, https://www.mlb.com/glossary/transactions/guaranteed-contract and https://www.mlb.com/glossary/
transactions/incentive-clause, respectively.
7"A batter is credited with an RBI in most cases where the result of his plate appearance is a run being scored." See, 
https://www.mlb.com/glossary/standard-stats/runs-batted-in.
8Errors also display the "wrong" sign in Table 1, albeit without a significant t-statistic.

https://www.mlb.com/glossary/transactions/guaranteed-contract
https://www.mlb.com/glossary/transactions/incentive-clause
https://www.mlb.com/glossary/transactions/incentive-clause
https://www.mlb.com/glossary/standard-stats/runs-batted-in.
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Table 1: Summary of Univariate Regressions

On-field Statistic Coefficient T-stat R2

AB 15,369.61 9.916 0.198
R 104,800.32 10.344 0.212
H 53,443.82 9.923 0.198
X2B 243,483.68 9.230 0.176
X3B -112,502.53 -0.857 0.002
HR 315,994.57 10.894 0.230
RBI 118,264.07 12.289 0.275
SB 34,639.20 0.904 0.002
BB 135,854.96 10.832 0.228
SO 51,486.14 7.224 0.116
IBB 786,963.63 9.098 0.172
GIDP 464,573.62 9.794 0.194
GS 45,035.50 7.154 0.114
PO 5,011.89 4.586 0.050
A 1,524.46 0.628 0.001
E 88,135.09 1.454 0.005

Figure 2, below, plots each control variable on the horizontal axis and salary on the 
vertical axis, with the OLS prediction shown in red.



178

Herndon / Journal of Economics Teaching (2023)

Figure 2: Univariate OLS Plots

So, we need to control for other factors, but which ones? Suppose we have four potential 
independent variables and wanted to understand the range of possible marginal effects and 
significance for a given dependent variable, var1. The R function crossing() generates a matrix 
of 1s and 0s indicating every available combination, with 1 and 0 corresponding to "included" 
and "excluded," respectively. 9 For the four variable example, our matrix is:

var1  var2  var3  var4
1      0     0     0
1     0     0     1
1     0     1    0
1     0     1     1
1      1     0     0
1     1     0     1
1     1     1     0
1     1     1     1

9This function is part of the tidyr package. See https://tidyr.tidyverse.org/ for details.

https://tidyr.tidyverse.org/
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Note that var1 is always "on," so it appears in every regression. The first row corresponds to 
a univariate regression, while the last represents the regression on all possible variables. 
The inner loop in the R script below runs a regression for every row in the 0/1 matrix. First, 
it multiplies each column by the corresponding 1 or 0. If a column sums to zero, it replaces 
the 0’s with NA, allowing the regression function lm() to skip those variables. The outer loop 
moves each variable into the first column in turn and runs the inner loop. So, the outer loop 
would run first with var1 always "on", then var2 always "on," and so on. This lets R always look 
for the coefficient and t-statistic in the first independent variable’s position. For our baseball 
data with 16 independent variables, each variable has 215 = 32,768 possible sets of controls. 
Hence the R script below runs 32,768 different regressions (inner loop) for all 16 independent 
variables of interest (outer loop), for a total of 16*215 = 524,288 regressions.  Note that some 
regressions run more than once; for example, every outer loop includes the regression on all 
possible independent variables. 

We conservatively defined "significant" t-statistics as those greater than 2 in magnitude; 
using the traditional 5 percent significance level (i.e. ± 1.96) would produce even more striking 
results.  Table 2, below, summarizes the results numerically. 

Table 2: Summary of 32,768 P-Hacked T-statistics

On-field Statistic Minimum Median Maximum Less than -2 Greater than 2

AB -2.120 2.069 13.374 2 17,176

R -2.036 1.658 13.531 1 12,834

H -2.155 0.824 13.473 31 8,453

X2B -2.633 -1.319 11.113 2,429 1,130

X3B -7.169 -4.219 -0.857 32,683 0

HR -2.949 1.130 11.091 182 11,886

RBI 0.835 2.842 13.595 0 26,263

SB -5.840 -1.788 1.566 13,405 0

BB -0.139 2.486 11.368 0 22,580

SO -5.182 -2.519 8.204 23,322 171

IBB 0.927 2.605 9.108 0 25,432

GIDP 0.596 2.581 10.549 0 25,037

GS -4.144 -1.125 9.467 5,881 700

PO -2.773 -0.887 4.644 1,390 96

A -5.625 -2.516 1.092 22,439 0

E -4.522 -1.793 1.659 15,771 0

Figure 3 conveys the same results visually, with every t-statistic on the horizontal axis 
and the coefficient for the variable of interest on the vertical axis.

Herndon / Journal of Economics Teaching (2023)
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Figure 3: Plots of T-statistics and Coefficients

5,881 of our regressions result in games started being negative and significant. It would be 
difficult to conceive of a less intuitive finding. However, simply starting a game does a team no 
good; players earn their salary via the actions captured by the other independent variables. A 
player called up from the minors mid-season who hits 35 home runs in 80 games can expect to 
make much more than a player taking 160 games to hit the same benchmark. 

We also observe many regressions with "incorrect" yet significant signs for strikeouts 
and hits; 171 and 31, respectively. While uncommon, these spurious results occur often enough 
that a scholar could present a vacuous set of robustness checks supporting multiple significant, 
but wrong, results. Students and journal referees alike should think critically about robustness 
checks that simply add additional controls; Table 2 shows that an article could report that hits 
decrease salary, then display 30 alternative equations supporting that claim. 

The results for doubles (X2B) and triples (X3B) are harder to explain.10 Both are relatively 
rare: the median player’s doubles and triples in the data set are 17 and 1, respectively. 2,429 
regressions return a negative and significant value for doubles, and 32,683 such regressions 
exist for triples. The lesson here is that students should hesitate before making an inference 
from a sparse phenomenon. 

Before moving on, consider that none of the results shown relied on data transformation. 
We did not take the logarithm of salary or any control variable, nor did we use quadratics 
10Also known as "extra-base hits," doubles and triples are both components of "hits," which is the sum of singles, 
doubles, triples, and home-runs. See, https://www.mlb.com/glossary/standard-stats/hit.

Herndon / Journal of Economics Teaching (2023)

https://www.mlb.com/glossary/standard-stats/hit.
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or interaction terms. To test a hypothesis that going from 10 to 20 home runs affects salary 
differently than going from 40 to 50, quadratics like HR and HR2 could offer a simple answer. 
Economists often apply the natural logarithm to skewed data, such as the salaries featured 
in this paper, to make inferences more reliable.11 Still, researchers should recall Keene’s (1995) 
admonition to pharmaceutical researchers: "It is clear that an industry statistician should 
not analyse the data using a number of transformations and pick the most favourable to the 
company." A responsible econometrician considers data transformations before running any 
regressions. In other words, the first question to ask is "What is the question?"  

4. How to Select Independent Variables

Social scientists should have a clear justification of variable choice in mind before 
typing a single line of code. Four scenarios below illustrate how the end goal should guide the 
empirical strategy. 

First, suppose a player’s agent wanted to argue that her client was underpaid relative 
to his performance. In that case, she might need the most accurate forecast possible and thus 
include every available variable. This maximizes R2 but at the cost of losing inference regarding 
marginal effects. There is no sensible way to interpret the effect of one additional hit holding 
strikeouts, walks, home runs, doubles, and triples all constant. This sort of trade-off is inevitable 
in econometrics.12 

Second, to discern causal effects we need to consider mediators and moderators. 
Suppose a young player wants to maximize his career earnings; should he focus more on raising 
his RBIs or his home runs? Certain control variables are obvious candidates for inclusion: one 
could argue that both RBIs and home runs at the plate are unaffected by errors in the field. But 
an increase in RBIs would almost certainly require an increase in hits. Similarly, swinging for 
the fences usually leads to more strikeouts. If we included these in our regression, they might 
diminish the effect of RBIs or home runs, causing us to underestimate their effect on salary. 
Pearl and Mackenzie (2018) offer a great starting point for thinking about this issue at a level 
accessible to undergraduates.

 Third, every variable discussed so far has been a discrete count variable, making every 
regression a "component model." However, ratios may convey as much information as their 
components, if not more. For baseball, batting average and fielding percentage are ubiquitous 
measures of player performance.13 The application of regression to finance can involve a range 
of ratios, broadly classified into liquidity, leverage, efficiency, profitability, and market value 
ratios. Ratios are also common in healthcare, covering everything from blood pressure to body 
mass index. The possibilities are vast, but the same pitfalls apply to the use of ratios as their 
components. Firebaugh and Gibbs (1985) wrote an introduction to this subject that most 
students should be able to read and understand during their first semester of econometrics. 

Lastly, Table 2 hints at an intuitive (but very inefficient) method of selecting a parsimonious 
model that lowers the risk of over-fitting. If we regress salary on the eight variables with a 
median t-statistic greater than 2 in absolute value, we obtain an R2 of 0.374, which compares 
favorably with the R2 of 0.397 when we regress on all 16 independent variables. This could be a 
useful starting point for introducing Least Absolute Shrinkage and Selection (Lasso) regression. 
Whereas traditional regressions minimize the mean squared error, a Lasso regression also 
penalizes the magnitude of the coefficients. As Géron (2019) notes in an introduction to the 
11West (2022) is an accessible introduction to log transformation. 
12Moreover, blindly maximizing R2 often leads to a model that overfits the data and fails to generalize.  R2 can 
convey useful information, but no single summary statistic should be considered in isolation. As Ziliak and 
McCloskey (2008) put it "Fit is not the same thing as importance. Statistical significance is not the same thing as 
scientific finding."
13These ratios are H/AB and (PO+A)/(PO+A+E), respectively.

Herndon / Journal of Economics Teaching (2023)
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subject "An important feature of Lasso regression is that it tends to eliminate the weights of the 
least important features."

5. Conclusion

Perhaps no course adds more to a young scholar’s tool kit than their first semester of 
econometrics. Understanding linear regression allows them to read empirical literature across 
the social sciences, appreciate the difficulty in linking cause and effect, and begin investigating 
research topics of their own. But lecturers should temper that heady feeling with an awareness of 
OLS’ assumptions and limitations. Perhaps by showing students the worst possible regressions, 
this paper will help them do better. 

Herndon / Journal of Economics Teaching (2023)
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6. R Replication Script

##############################################################################

# Part 1: data download and prep. Please skip to part 2 if you already have 

# data with named columns and the dependent variable in the first column. 

##############################################################################

##############################################

## Data Table Constitution ########################

##############################################

remove(list=ls())

setwd("C:/Users/author/Desktop/p_hacking paper") #your drive here

require("dplyr")

#Source for baseball data

library("Lahman") 

#####################

## Salary data #########

#####################

pay <- Salaries[Salaries$yearID==2016,] #selecting 2016

pay <- pay[,4:5] #selecting relevant variables

#identify and combine salary for players who were paid by > 1 team

test <- as.data.frame(table(pay$playerID))

pay <- merge(pay, test, by.x="playerID", by.y = "Var1")

remove(test)

pay_1 <- pay[pay$Freq==1,]

pay_mult <- pay[pay$Freq>1,]

mult_team_pay <- unique(pay_mult$playerID) #1 player paid by >1 team

#loop to combine stats for players across multiple teams

#then bind the consolidated row to pay_1

for(i in 1:length(mult_team_pay)){
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  combined_row <- pay_1[1,] 

  combined_row[1,1] <- mult_team_pay[i]

 

  player <- pay_mult[pay_mult$playerID==mult_team_pay[i],]

  combined_row[1,2] <-  sum(player[,2])

  pay_1 <- rbind(pay_1,combined_row)

  

}

pay_1 <- pay_1[,1:2] #dropping the teams paying column

#######################

## Batting Data ##########

#######################

bat <- Batting[Batting$yearID==2015,] #selecting 2015 stats

bat <- bat[,c(1,7:14,16:18,22)] #selecting relevant variables

###############################################

# combined stats for players traded in-season #########

###############################################

#identify players traded in-season

test <- as.data.frame(table(bat$playerID))

bat <- merge(bat, test, by.x="playerID", by.y = "Var1")

remove(test)

bat_1 <- bat[bat$Freq==1,]

bat_mult <- bat[bat$Freq>1,]

mult_team_player <- unique(bat_mult$playerID) #players traded in-season

#loop to combine stats for players with multiple teams

#then bind the consolidated row to bat_1
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for(i in 1:length(mult_team_player)){

  combined_row <- bat_1[1,] 

  combined_row[1,1] <- mult_team_player[i]

  player <- bat_mult[bat_mult$playerID==mult_team_player[i],]

  combined_row[1,2:14] <-  colSums(player[,2:14])

  bat_1 <- rbind(bat_1,combined_row)

}

bat_1 <- bat_1[,1:13] #dropping the position count column

########################

## Fielding Data ##########

########################

field <- Fielding[Fielding$yearID==2015 & Fielding$POS !="P",] #remove pitchers

field <- field[,c(1,8,10:12)] #remove unneeded columns

########################################################

#find and combine stats for players with > 1 position #############

########################################################

test <- as.data.frame(table(field$playerID))

field <- merge(field, test, by.x="playerID", by.y = "Var1")

remove(test)

#identify players with more than 1 position

field_1 <- field[field$Freq==1,]

field_mult <- field[field$Freq>1,]

mult_pos_player <- unique(field_mult$playerID) #multi-position players

#loop to combine stats for players with multiple positions

for(i in 1:length(mult_pos_player)){

  combined_row <- field_1[1,] 

  combined_row[1,1] <- mult_pos_player[i]
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  player <- field_mult[field_mult$playerID==mult_pos_player[i],]

  combined_row[1,2:6] <-  colSums(player[,2:6])

  field_1 <- rbind(field_1,combined_row)

}

field_1 <- field_1[,1:5] #dropping the position count column

############################################

# Combine Salary, Batting, and Field Data ##########

############################################

data <- merge(bat_1,pay_1, by="playerID", all = FALSE) #inner join

data <- merge(data, field_1, by="playerID", all = FALSE) #inner join

#remove player name and make salary the first column

data <- data[,-1]

data <- data %>% select(salary, everything())

save(data, file="baseball_data.RData") #this is table we use in Part 2

######################################################################

### Part 2: P-hacking and Analysis of Results ##################################

######################################################################

remove(list=ls())

setwd("C:/Users/author/Desktop/p_hacking paper") #your drive here

require(dplyr)

########################

### baseball data upload ###

########################

load(file = "baseball_data.RData") #your file here

attach(data)

#####################################

#Figure 1: Salary Histogram ##############
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#####################################

#adjust for the scale and name of your dependent variable

par(mfrow=c(1,1))

xpos <- seq(0, max(data[,1]), by=2000000)

hist(data[,1], breaks=30, xaxt="n",

     main = "",

     xlab="Salary in millions") 

axis(1, at=xpos, labels=format(xpos/1000000))

#############################################

### Table 1: Univariate OLS ######################

#############################################

univariate_results <- as.data.frame(matrix(0,nrow = ncol(data) ,ncol=4))

for(i in 2:ncol(data)){

  x <- summary(lm(salary~data[,i])) #adjust to your dependent variable name

  univariate_results[i,1] <- colnames(data)[i]

  univariate_results[i,2] <-  x$coefficients[2,1] #coefficient

  univariate_results[i,3] <- x$coefficients[2,3] #t-stat

  univariate_results[i,4] <-x$r.squared

}  

colnames(univariate_results) <- c("variable","coefficent", 

                                  "t_stat", "r_squared")

univariate_results <- univariate_results[-1,]

write.csv(univariate_results, file="table_1.csv")

##################################

# Regression on all variables ###########

##################################
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summary(lm(salary~ ., data = data)) #adjust for your dependent variable 

##########################################

## Figure 2: Univariate OLS Plots ###############

##########################################

data$col  <- "light grey"

par(mfrow=c(4,4)) #adjust for the number of dependent variables

loop_length <- ncol(data)-1

for(i in 2:loop_length){

  plot(data[,i],salary, #adjust for your dependent variable 

       main=colnames(data)[i],

       col=data$col,

       yaxt="n",

       xaxt="n",

       xlab = "",

       ylab="salary") #adjust for your dependent variable 

  abline(lm(salary~data[,i]),col="red") #adjust for your dependent variable 

}

data <- data[,-ncol(data)] #remove the color column

salary <- data[,1] #adjust to your dependent variables

ind_var <- data[,2:ncol(data)]

###################################################

# example 0/1 matrix used to obtain all combinations #######

###################################################

demonstration <- tidyr::crossing(var1 = 1:1, var2 = 0:1, var3 = 0:1, var4=0:1)

#The first row is univariate, the last is every available variable

#Note that we always leave the first variable "on"
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demonstration

#############################

### full matrix for baseball data ###

#############################

#The first variable is always "on"

#Add or remove additional varXX=0:1 to match your number of variables

combo_test <- tidyr::crossing(var1 = 1:1, var2 = 0:1, var3 = 0:1, var4=0:1,

                                var5 = 0:1, var6 = 0:1, var7 = 0:1, var8=0:1,

                                var9 = 0:1, var10 = 0:1, var11 = 0:1, var12=0:1,

                                var13 = 0:1, var14 = 0:1, var15 = 0:1, var16=0:1) 

combo_test <- t(combo_test) #transpose 

combo_test <- as.data.frame(combo_test) #transform 

rownames(combo_test) <- colnames(ind_var) #label

##################################################

#loop to run regressions over all possible combinations #####

##################################################

t_stat_storage <- as.data.frame(matrix(0,nrow = ncol(combo_test),ncol=0)) 

col_of_interest <- colnames(ind_var)

for(h in 1:ncol(ind_var)){

  #This loop adjusts ind_var so that the variable of interest is always first

  #This allows us to pull the correct output from the regression summary

  ind_var_loop <- ind_var %>% relocate(col_of_interest[h], 

                                       .before =colnames(ind_var)[1] ) 

  #Loop storage will attach to t_stat_storage

  loop_storage <- as.data.frame(matrix(0,nrow = ncol(combo_test),ncol=2)) 

  colnames(loop_storage) <- c(paste("t_stat",colnames(data[h+1]),sep="_"),

                              paste("coef",colnames(data[h+1]),sep="_"))

  for(i in 1:ncol(combo_test)){
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    #This loop selects the set of dependent variables 

    # using columns from combo_test

    loop_data <- ind_var_loop

    loop_factor <- as.list(combo_test[,i])

    #zero out the variables you need to exclude

    for(j in 1:ncol(loop_data)){

      loop_data[,j] <- loop_data[,j]*loop_factor[[j]][1]

    }

    #turn the zero variables into NA

    for(j in 1:ncol(loop_data)){ 

      #j  <- 1

      if(sum(loop_data[,j])==0)

      {loop_data[,j] <- NA}

    }

    #remove the NAs

    loop_data <- t(na.omit(t(loop_data)))

    #run the regression, then store the coefficient and t-stat

    reg_1 <- lm(salary~loop_data)

    summary_test <- summary(reg_1)

    loop_storage[i,1] <- summary_test$coefficients[2,3]

    loop_storage[i,2] <- summary_test$coefficients[2,1]

  }

  t_stat_storage <- cbind(t_stat_storage,loop_storage)

  print(h) #tells us which independent variables have finished

}

save(t_stat_storage, file = "t_stats_and_coefs.RData")

##############
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# Table 2 ######

##############

load(file = "t_stats_and_coefs.RData")

regression_summary <- as.data.frame(matrix(0,nrow = length(ind_var), ncol=6))

t_stat_cols <- seq(from = 1, to = 2*ncol(ind_var), by = 2)

for (i in 1:length(ind_var)) {

  j <- t_stat_cols[i]

  regression_summary[i,1] <- colnames(ind_var)[i]

  regression_summary[i,2] <- min(t_stat_storage[,j])

  regression_summary[i,3] <- median(t_stat_storage[,j])

  regression_summary[i,4] <- max(t_stat_storage[,j])

  regression_summary[i,5] <- length(which((t_stat_storage[,j]) < -2))

  regression_summary[i,6] <- length(which((t_stat_storage[,j]) >  2))

}

colnames(regression_summary) <- c("var_name", "min_t_stat","median_t_stat",

                                  "max_t_stat","neg_&_sig","pos_&_sig")

save(regression_summary, file = "regression_summary.RData")

write.csv(regression_summary, file = "table_2.csv")

######################################################

#### regress on independent variables with sig. median t-stat ###

######################################################

#adjust based on your Table 2

summary(lm(salary~AB+X3B+RBI+BB+SO+IBB+GIDP+A))

#############################################

## Figure 3: Scatter plot coefficient and t-statistic #####

#############################################

load(file = "t_stats_and_coefs.RData")
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t_stat_storage$col  <- "light grey"

par(mfrow=c(4,4)) #adjust for the best display of your variables

coef_cols <- t_stat_cols +1

loop_length <- ncol(t_stat_storage)-1

for(i in 1:loop_length){

  plot(t_stat_storage[,t_stat_cols[i]], 

       t_stat_storage[,coef_cols[i]],

       col=t_stat_storage$col,

       xlab = "t-stat",

       ylab = "Beta",

       main= colnames(ind_var)[i])

  abline(v=c(0))

  abline(h=0)

}
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